The Domination Number of Exchanged Folded Hypercube

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The domination number of exchanged hypercubes

Exchanged hypercubes [Loh et al., IEEE Transactions on Parallel and Distributed Systems 16 (2005) 866–874] are spanning subgraphs of hypercubes with about one half of their edges but still with many desirable properties of hypercubes. Lower and upper bounds on the domination number of exchanged hypercubes are proved which in particular imply that γ(EH(2, t)) = 2 holds for any t ≥ 2. Using Hammi...

متن کامل

A comment on "The domination number of exchanged hypercubes"

This note presents a technical improvement to an upper bound in “The domination number of exchanged hypercubes” [Inform. Proc. Lett., 114 (2014) 159-162] by Klavžar and Ma.

متن کامل

The Folded Hypercube ATM Switches

Over the past few years, many high performance asynchronous transfer mode (ATM) switches have been proposed. The majority of these switches have high performance but also high hardware complexity. Therefore, there is a need for switch designs with low complexity and high performance. This research proposes three new ATM switches based on the folded hypercube network (FHC). The performance of th...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Incrementally Extensible Folded Hypercube Graphs

In this paper, we propose the incrementally extensible folded hypercube (IEFH) graph as a new class of interconnection networks for an arbitrary number of nodes. We show that this system is optimal fault tolerant and almost regular (i.e., the difference between the maximum and the minimum degree of nodes is at most one). The diameter of this topology is half of that of the incomplete hypercube ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Software Engineering and Applications

سال: 2017

ISSN: 2325-2286,2325-2278

DOI: 10.12677/sea.2017.65012